The effect of oxygen transmissibility on central and peripheral overnight corneal swelling with four different silicone hydrogel lenses

Desmond Fonn, Amir Moezzi, Jalaiah Varikooty, Treford Simpson

Centre for Contact Lens Research, School of Optometry, University of Waterloo, Waterloo, Ontario, Canada

Introduction

- Holden and Mertz hypothesized that a minimum oxygen transmissibility (Dk/t) of a lens should be 87.3.3 (barrers/cm) in order to prevent overnight corneal swelling.1 More recently, a value of 125 (barrers/cm) has been proposed as the critical Dk/t of a lens to prevent lens-induced overnight corneal anoxia.2
- Studies have shown that silicone hydrogel lenses induce less corneal swelling compared to conventional hydrogel lenses when worn overnight.2,3
- This is the first study comparing overnight corneal swelling induced by four different Silicone hydrogel lenses with three different powers.

Materials & Methods

Study Design

- Twenty nine neophyte subjects wore lotrafilcon A, balafilcon A, galyfilcon A and senofilcon A lenses using powers -3.0, -10.0 and +6.0 D in each material on separate nights, in random order, and in one eye only.
- The contra-lateral eye (no lens) served as the control.
- All the subjects were non contact lens wearers.
- Corneal thickness was measured at the centre, 2.3 and 3.4 mm from the centre using a digital optical pachometer before lenses insertion, immediately after lens removal on waking, then 20, 40 minutes, 1, 2 and 3 hours later.

Table 1: Lens Parameters

<table>
<thead>
<tr>
<th>Lens</th>
<th>Manufacturer</th>
<th>Material</th>
<th>3.4 mm Central Dk/t (Barrers/cm)</th>
<th>Power</th>
<th>3.4 mm Central Dk/t Nominal for -3.00</th>
<th>3.4 mm Edge Dk/t Nominal for -3.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night & Day™</td>
<td>Ciba Vision</td>
<td>lotrafilcon A</td>
<td>140</td>
<td>-10.00</td>
<td>-10.00</td>
<td>-10.00</td>
</tr>
<tr>
<td>PureVision™</td>
<td>Bausch & Lomb</td>
<td>balafilcon A</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acuvue Advance™</td>
<td>J&J</td>
<td>galyfilcon A</td>
<td>60</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Acuvue OASYS™</td>
<td>J&J</td>
<td>senofilcon A</td>
<td>103</td>
<td>147</td>
<td>147</td>
<td>147</td>
</tr>
</tbody>
</table>

Table 1: Lens Parameters

Average for power, there was a significant difference in central swelling across lenses, lotrafilcon inducing the least (6.2 ± 2.8 %) and galyfilcon the most (7.6 ± 3.0 %) at the centre (ANOVA, p<0.001). There was no difference between galyfilcon balafilcon and senofilcon, and between lotrafilcon and senofilcon (post-hoc tests; p>0.05) (Figure 1). Immediately after lens removal, all lenses induced significantly more central corneal swelling than their respective controls (all post-hoc tests; p<0.05) (Figure 1). There was a significant effect of corneal position on overnight swelling when averaged over lens and power (ANOVA; p<0.001) (Figure 2). There was no difference between central and 2.3 mm inferior corneal position (7.0 ± 2.8 % vs. 6.6 ± 2.8%, post-hoc test; p>0.05). Corneal swelling at both these positions were significantly greater than the 3.4 mm position (5.9 ± 2.8 %); (post-hoc tests; p<0.05 for both).

As shown in Figure 3, corneal swelling in both para-central 2.3 and mid-peripheral 3.4 corneal positions followed the same trend as central swelling; lotrafilcon inducing the least and galyfilcon inducing the most amount of corneal swelling across the study lenses. The difference was only significant at the central and 2.3 mm locations (ANOVA; p<0.001).

Following lens removal lotrafilcon induced significantly less central corneal swelling than balafilcon and galyfilcon (all post-hoc tests; p>0.05) for the first hour but up to 40 minutes for senofilcon (all post-hoc tests; p<0.05) (Figure 4).

Conclusions

- The differences in central and paracentral corneal swelling of the test eyes are consistent with the differences in oxygen transmission of the silicone hydrogel lenses in this study.
- Greater corneal swelling in the centre than the mid-peripheral cornea in this study was not dependent on the lens material, and is supported by previous findings using conventional hydrogel5 or PMMA6 lenses.
- Overnight wear of each lens in this study induced more corneal swelling than the non-wearing contralateral control eyes as shown previously.7,11

Acknowledgements

This study was supported by a grant from Ciba Vision USA.

References