Method Optimization for the Quantification of Total Protein Deposited on Silicone Hydrogel Contact Lens Materials

M.-A.M. Glasier, M. Senchyna, L. Jones, N. Mahabir.

Centre for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada

Introduction

Silicone-hydrogel (SH) contact lens materials such as balafilcon (Purevision (PV), Bausch \& Lomb) and lotrafilcon (Focus Night\&Day (FND), CIBA Vision) deposit significantly less protein compared to conventional hydrogel contact lens materials such as etafilcon (Acuvue (AV), Vistakon).1.2 Preliminary data from our
laboratory suggests that PV and FND lenses deposit less than 30 ug and 5 ug of total protein respectively, which is in stark contrast to AV lenses, that tend to deposit over a $1000 \mu \mathrm{~g}$ of total protein.
\square In order to gain a thorough understanding of protein deposition on multaneously. Thus the actually available for assay is only a fraction of the total amount deposited, as the extracted deposit must be "divided" into various fractions to facilitate multiple assays.
Traditional protein assays, such as the Bradford ${ }^{3}$ and micro-BCA lack the required sensitivity to quantify the nanogram quantities of total protein expected in a fraction of a SH lens extract
Factors important to the measurement of protein in contact lens extracts include the effect of tear film components such as lipid ${ }^{1,}$ co-extracted with protein in extracts of unworn SH contact lenses.

Aims
To optimize a procedure to accurately quantify total protein in extracts from SH lenses in the low to mid nanogram range.
Methods

Four protein assays were assessed: (a) CBQCA (Molecula Pous) (b) red-dot-blot ${ }^{7}$ (RDB); amido black (AB) onto (c) nitrocellulos (b) red-dot-blot' (RDB); amido black (AB) onto (c) nitroc
(NC) and (d) polyvinylidene difluoride (PVDF) membranes.

The CBQCA assay was performed according to the manufacturer's instructions in 96 -well ELISA microtitre plates. The ELISA plate nm).

- For membrane-based assays (c) and (d), protein was applied to membranes in phosphate-buffered saline (PBS; $50 \mu \mathrm{l}$) using the Bio-Dot Microfiltration Apparatus (BIO-RAD). For the RDB
assay, protein was applied manually to nitrocellulose in $1 \mu \mathrm{l}$ of PBS. Membranes were imaged and densitometry was performed on a Syngene Gene Genius ${ }^{\text {TM }}$ Gel Documentation System.

Assays were evaluated for sensitivity by titration of BSA standard. The working range ($25-500 \mathrm{ng}$) was investigated for select assays wit BSA, hen egg lysozyme (HEL) and bovine lactoferrin (all data not shown)
To evaluate accuracy, protein assays were subjected to a panel of tear film proteins analyzed at 200 or 300 ng . These proteins included human lysozyme, human secretory IgA, human abumin, human tears collected from solutions were prepared in saline at $\sim 1 \mathrm{mg} / \mathrm{ml}$ and quantified by Ninhydrin ${ }^{8}$ assay using BSA as standard.
-Cross-reactivity toward 50:50 acetonitrile / 0.2% trifluoroacetic acid ${ }^{9}$ extracts (1.5 ml) of unworn PV, FND and AV contact lenses was assessed by measuring apparent protein.
The tolerance of protein assays to the presence of lipid was tested by measuring HEL in the presence and absence of lipid at final concentrations consisting of triolein ($0.032 \mathrm{mg} / \mathrm{ml}$), cholesterol ($0.112 \mathrm{mg} / \mathrm{ml}$), oleic acid $(0.016 \mathrm{mg} / \mathrm{ml})$, oleic acid methyl ester $(0.048 \mathrm{mg} / \mathrm{ml})$, and cholesteryl oleate proteins with complex assays were compared for their ability to proteins with complex characte
of 2.7 and 50% carbohydrate).

Figure 1: Comparison of Assay Sensitivity: Graphical representation
 protein assays CBQCA RDB, AB on PVDF and $A B$ on NC under study.

Figure 2: Evaluation of Protein Assay Quantitative Accuracy: A fixed mass of protein was subjected to protein assays AB on NC, AB on PVDF, and CBQCA. BSA served as standard. Performance was based on the ability of each assay to measure protein concentration relative to the Ninhydrin assay. Percent accuracy $=$ [Measured Mass / Applied Mass] 100 . The average $\%$ accuracy and standard deviation are given for $A B$ n NC and AB on PVDF ($\mathrm{n}=3$); for CBQCA, $\mathrm{n}=1$.

Figure 3: Cross-Reactivity of Protein Extracts from Unworn Contact Lenses: Graphical representation of apparent protein measured by assays $A B$ on $N C, A B$ on PVDF and CBQCA from extracted $1.6-10 \%$ for PV and AV and 8-16\% for FND. Each value represents the average and standard error of the mean (SEM) $(\mathrm{n}=4)$.

| | \% Accuracy of Measurement | | |
| :---: | :---: | :---: | :---: | :---: |
| | AB on NC | $\underline{A B}$ on PVDF | CBQCA |
| | | | |
| HEL | 117 ± 8 | 100 ± 6 | 98 |
| HEL + Lipid | 125 ± 14 | 95 ± 7 | 102 |
| acid glycoprotein | 12 ± 3 | 76 ± 3 | 65 |
| n | 3 | 2 | 1 |

[^0] in Figure 2. The lipid mixture is described in the Methods.

Conclusions

 All protein assays were sensitive in the low nanogram range. TheRDB could not be used with the Bio-Dot Microfiltration apparatus and was discontinued part way through this study
AB on NC (and RDB) most accurately measured the mass of human tears and mucin.
$\square \mathrm{AB}$ on PVDF showed the least protein-to-protein variation and, in general, measured proteins, including $\alpha 1$-acid glycoprotein, more accurately than CBQCA.
a All protein assays measured protein in the context of lipid at two times the concentrations typically present in human tears.
Cross-reactivity to extracts was observed with all assays except $A B$ on NC.
We conclude that the optimized AB on NC assay provides optimal reliability and sensitivity for quantification of a minimum of 50 ng total protein. This assay will be very useful to quantify total protei deposition on SH lens materials.

References

1. Jones Let al. Lysozyme and lipid deposition on silicone-hydrogel lens materials.
Eye and Contact Lens 2003 (suppl); 29 (1): s75-s 79 .

Senchyna et deposited on balaficon and etafilcon contact lens materials. Curr Eye Res Bradford MM A rapid and sensitive method for the quantitation of microgran Bradford MM. A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248-54.
Smith : 4. Smith PKetal. Me
1985; 150:76-85.
5. Bontempo AR, Rapp J. Lipid deposits on hydrophilic and rigid gas permeable
contact lenses. CLAO J 1994; 20(4): 242
6. Tan Jet al. Mucin balls with wear of conventional and silicone hydrogel contac lenses. Optom Vis Sci 2003; 80(4):291nanogram range. Anal Biochem 1999 270(1):75-82.
8. Starcher B. A ninhydrion-based assay to quantitate the total protein content of
tissue samples. Anal Biochem 2001;292(1):125-9. Keith D et al. A novel procedure for the extraction of proteins from soft
hydrophilic contact lenses for analysis. Curr Eye Res 1997; (16):503-510.

Acknowledgements

This work was funded by a Collaborative Research and Development Foundation for Innovatio

[^0]: Table 1: Evaluation of Lipid and Complex Protein Structure on Protein Assay Quantitation: Protein was applied and analyzed as

